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NOmONS OF EmEPEmENCE FOR W m O M  VAMABLES 

Abstracf. The p a p  considers two known nations of indepen- 
dence for ra~ldom variables in the probability space (X, I, P), where 
X i s  a subset of the fixed uncountable standard space and - the 
o-field d Boi-el subsets relativized to X. 

0. P n r k P r w d ~ t i ~ m .  When are two random variables independeat? There are 
at least two definitions af the concept: in their measure-theoretic form, they 
may be traced back to "'founding fathers" Kolmogoroff and Stdnhaus. In 
response to a challenge of E. Marczewski, both Doob and Jessen 121, [3] 
simultaneously produced examples to show that, in general, the two defini- 
tions are not eqtuvalent. However, with the natural assumption that the 
underlying probability space is perfect, Steinhaus- and Kolmoguroff-inalepen- 
dence come to mean the same. Particulars may be found in [7] and [8]. 

In [7], D. Ramachandran showed that a certain set-theoretic condition 
for measurable structures (the strong Blackwell property) also reconciles the 
two definitions. He asked (P 9310) whether a weaker condition (the Blackwell 
property) would sdfice. An example in [13] shows that, at least under the 
continuum hypothesis (CH), the answer is "no". He also asked (IP 931) 
whether the equivalence of the two notions of independence implies an 
almost sure Blackwell property. In this paper, we see that the answer is again 
in the negative (CW). However, for a certain class of singular spaces, 'a 
limited form of such a result is available (Propsition 2). 

Our main technique in this is the idea of a density of sets relative to a 
given a-ideal of Borel sets [10], C12-J. Density with respect to the nideal of 
courrtable sets is cIosely related to "'Blackwell properties" (Lemma 51, whereas 
density for the a-ideal of probability zero sets bears on the question of 
independence (Proposition 1). 

1. Beiliihary sumey. We deal exclusively with separable spaces: these 
are measurable spaces (X, B) whose a-algebra 99 is countably generated 4c.g.) 
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and contains all singleton sets drawn from X. If A is a subset of X, then A 
becomes a separable space under the relative structure $'(A) 
= {B n A : B E a]. A separable space ( S ,  $3 (s)) is standard if there is a 
complete separable metric on S for whish W ( S )  is the corresponding Bord 
structure. Any two uncountable standard spaces are Borel-isomosphc, and 
any separable space is isomorphic with a subset of an uncountable standard 
space. For these and other ~customaries concerning separable spaces, we refer 
the reader to the references [I], [la], or the first parts of [ 5 ] .  

Hereon, the symbol S will denote a fixed uncountable standard space 
with Bore1 structure 9 = a(@. 

LEMMA I .  Let X be a subset of S and let V(X) be a c.g. sub-#-algebra of 
a[X). Then there is u c.g. sd-o-algebra W of B(S) whose relative ;!structure on 
X is W(X). 

P r o  of, Since %(%) is cg., there is a real function f on 91 such that %?(XI - { f -'(B): B a linear Borel set). For this technique, consult [I] or 161. 
Now there is an extension g off to all of S which is B(S)-measurable ([dl, p. 
434, or [9]). Then W = {g-"B): B linear Bore1 set] is the desired a-algebra, 
q.e,d. 

Let I be a s-ideal in this Borel structure a($). A subset R of S x S  in I -  
reticulate i f  there is  some set N in I with R c (N  xS) u(S x M). A subset X of 
S is I-detwe (of ordm 1) if X intersects every set in @(S)\I. A subset X of S Is 
I-dense of arder 2 if X x X interwds every set R In .B(S xS) which is not 1- 
reticulate. We shall be interested in two particular a-ideals. 

Let I ( c )  be the 0-ideal of all countable subsets of S. In keeping with the 
phraseology of earlier work [10], [12], we shall use the term Borel-dense to 
mean Z(c)dense. Let rn be a Bore1 probability measure on S. Define H(n2) to 
be the a-ideal of all m-null members of g(8. Note that X is H(Pn)-dense in S 
if and only if m* (X) = 1. 

By a probability space we mean a triple ( X ,  g(X), P), where P is a 
probability measure on @(X) and (X, g(Xj) is a separabIe space. Suppose 
that X is a subset of S. The11 each probability P on X gives rise to a 
probability P on S. Define P(B) = P(BnX)  for B in @(S) to be the 
probability induced by P. We may pass freely between probabilities on S and 
on X c S via the easy 

LEMMA 2. Let 171 be a probability on S and let P be a probability on 
X c S.  Then 

(a) (fl* = P; 
[b) $ m*(X) = 1, then m* = m. 
A probability space (X, @, P) is perfect if there is some standard set 

B E B ( X )  with P(B) = 1. This definition &Bers from the usual one, but the 
two agree when (X, B(X)) is separable ([8], 2.4.1, and [la], Theorem 2). Say 
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that a separable space X is arniversa~lly measuraBle (u.m.) if (X, B ( X ) ,  P)  is 
perfect for every probability P on  X. Again, this is different from the usual 
definition, but the two coincide for separable spaces 4[113p Lemma 4). Our 
perfect spaces are those termed "metrically standad" by Msbckey [53. 

Let m be a probabigty on S. Two sub-G-algebras Yi and 9 in &@IS) are 
nz-independent if m(C n D) =; m (C) m (D)  for all C E %' and D E $9. A real 
measurable function 5 on a probability space (X, .@, P)  is called a random 
variable. Each random variable generates two "spec~ral" '-algebras in ,@(a: 

B(5) = {<-*(B): B linear Bore1 set); 
= { t - l ( A ) ~ ~ [ x ) :  A linear set). 

Clearly, g(t) c sf({) c W ( X ) .  Random variables and 17 are Steinhaus- 
independent [resp. Rnlmogorof-independent3 if g(t) and B(Q) [reap. d(<) 
and d ( y ) ]  are P-independent. Say that ( X ,  g, Pj is an independence space if 
these notions of independence coincide, There are classical examples due to 
Doob and Jessen [2], 533 to show that not every probability triple is an 
independence space. Say that a separable (X, 9) is a universal iwdepndence 
space if for every probabiIity P on X, the triple (X, :3, P) is an independence 
space. Using Lemma 2, it is easy to establish 

LEMMA 3. Let rn be a Borel probability an 5' and let X c S be such that 
m* (X) = 1. Put P = m* on (X, B(x)) arrd suppose that %? avsd $23 awe sedb-a- 
algebras of B(S). Then the foklowiw are equiuaklenr: 

(I) V and 3 are m-iadependent; 
(2) V(X) and 9 ( X )  are P-independent. 
We say that a separable space (X, &l(X)) is strongly BlackweII [rap. 

BlackwelQ if for each real measurable function [resp. one-one function] on 
X ,  one has a(5) = d(5). For a survey of results on Blackwellian properties, 
see [I]. We mention a few basic facts. 

Fact I. Let (X, g) be a separable space. Then the following are 
equivalent: 

(1) (X, 3) is a Blackwell space; 
(2) whenever %(X) is a ~.g.  sub-cr-algebra of g(X) separating points of 

X, then W ( X )  = AiJ(X); 
(3) whenever 5 is a one-one measurable real function on (X, B), then 

is a Borel isomorphism of X onto its image <(A''). 
Fac t  2. Let (X, 9) be a separable space. Then the following are 

equivalent : 
(1) (X, B) is strongly Blackwell; 
(2) whenever %(X) and 9 ( X )  are c.g. sub-o-algebras of B(X) with the 

same atoms, then %(XI = 9(X); 
(3) whenever 5 is a measurable real function on (X, 91, then c(X)  c R 

has the Blackwell property. 
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Fac t  3. If (X, is Blackwell pap. strong Blackwell], then e v q  
member of g (X)  is Blackwell [rasp. strong Blackwell] in its relative struc- 
t ure. 

Fact  4. Every standard or analytic space is strongly Blackwell, 
Fac t  5. There is at least one co-analytic space without the Blxdckwell 

property. 
Fact  6. There is a strong Blackwell space (X, .@ which is not u.m. 
Proofs of all of these points and a short history of these objects are to 

be found in [l J. The question of whether there is a Blackwell space not 
s*ongly Blackwell is unsettled except under some extra set-theoretic assump- 
tions (such as MA or CH, where it is true - this according to some 
unpubIished work of D. Fremlin, W. Bzyl and J. Jasinski). 

LEMMA 4. Euer-y strong Blackwell ( X ,  $1 is o universal independence 
space. 

Proof. This folIows quickly from the definitions, since a(<) and d(<) 
always coincide. 

In [12], one finds a prosf of the following 
LEMMA 5. Let X be Baral-dense in S. Then the following are eqdualenr: 
(1) (X, &?(X)) is strong Blackwell; 
(2) ( X ,  B(X)) is Blackwell; 
(3) X is Borel-dewe of order 2. . 

Say that a probability space (X, BIX), P) is almost surely (a.s.1 Blackwdl 
[resp. strong BlackwelQ if there is some B in B(X) with P(B)  = 1 a d  
( B ,  B(B)) Blackwell [resp. strong B1ackwell-J. 

To summarise, we offer the following diagram of implications: 

strong Blackwell 

set-theoretic { universal independence 

space 
+/----+ Blackwell 

perfect space 

measure-theoretic 
b a. s. strong Blackwell 

I 

( independence gpaee & a. s. Blackwell 

Properties in the upper bracket are set-theoretic and apply to a separab- 
le space (X, B ( X ) ) ;  those in the lower bracket are rneasure-theoretic and 
apply to a probability space (X, BCX), PI with separable Bore1 structure 
$?(a. Within each bracket, no other implications may be added to the 
network. To see this, we recall facts 5 and 6 supra, noting that every co- 
analytic space is u.m. Also: 

1. Assuming the continuum hypothesis CH, or Martin's Axiom MA, 
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there is a Blackwell space which is not a universal independence space. An 
example is constructed In [13]. 

2. There is an independence space (X, @, P) wwhh is not a.s. Blackwell. 
This is one of the main results of this paper: v. the exanpEe in the next 
section. 

2 New reswlts, The imposition of the strong Blackwell property on a 
separable space provides an easy escape from any paradox involving discre 
pancy between the Steinhaus and Kolmogoroff definitions of independence. 
It must be said, however, that it is a rather artificial restriction and, in view 
of our counter-examples, one that is overly severe, A more natural condition 
is that of I (@-density of order 2, which we conjecture to be equivalent to the 
independence .property. 

LEMMA 6. Let m be a Borel probability on S o~ld suppose that X c S b 
I(tn)-dense of o;her 2 in 3. Suppose that V c W , ,  ore cg. sub-0-algebras of 
B(S) such that W [ X )  and '8, (X )  have the same atom. Then there is a set N in 
W (S) with mN = (3 and W(S\N) = 4$, (S\N). 

Proof. Let f and fl be real functions generating the a-algebras %? and 
59,. Define 

T = (Is, t )  E S x S :  f IS) = f ( t )  and fl (3) # .fl @)). 
Then T n (X x X) = @, so that there is some N as indicated with 

T c ( N  x S) u (S x N). The11 V(S \ N )  and (6.t {S\Nj have the same atoms. 
Since S \ N  is standard, it has the strong Blackwell property. This implies 
that V(S \N) = Wl ( S  \RT), q.e.d. 

PROPOSITION 1 .  h t  m be a Borel probability on a standard space S and let 
X c S be d(m)-dense of order 2 in S .  Then ( X ,  B(m, m*) is an independence 
space. 

Proof. Let W ( X )  and g ( X )  be c.g. sub-a-algebras of B(X) which are 
m*-independent. By Lemma 1, there are c.g. suba-algebras g and 9 of g(S) 
whose relativisations to X are %(X) and g(X), respectively. From Lemma 3, 
% and 9 are rn-independent. 

Suppose that A and B are sets in such that A n X and B n X are 
unions of %'(X)-atoms and g(X)-atoms, respectively. Define V ,  =a(%, A) 
and 9, = o ( 3 ,  Bj. We must establish that %,(X) and B,(X) are m*- 
independent. 

Using Lemma 6, we produce a set N in B(S) with m (lV) = O such that 
%(S\lV) = %, (S\N) and 9 (S\N) = B1 (S\W. Calculate: 
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Conjecture, Let P be a Borel probability on X c S.  Then the follo- 
wing are equivalent: 

(I )  (X, B(X), P)  is an independence space; 
(2) X is f (&-dense of order 2 in S ,  
The following example decides (P 931) in [7], which is Q.5 in L8-J 
Example. Assuxnang CH, there is a non-perfect independence spa= 

which is not as, Blackwell. 
Construction. We take S to be the unit interval 10, I[ under the 

usual standard structure and define m to be Lebesgue measure on S. List the 
uncsuntabb members of O(S) as B, R,  B, ... B, . .  .,a < c; list the sets in 
9 ( S  x S)  whi~h are not 1 (n?)aeticuIate as R, R, R 2 . .  . Ra . . . , a < c; finally, 
list the rn-null sets in g (S )  as No N ,  N , .  . .N , .  . . , a < c. For each a < e, 
define Me = I.) INp: P < a ] .  

Define f: S t  S by thc rule f (3) = I -s. Define, for each a! < c, the set 
6, = { (s ,  f (s)): s E IW, or f [s) E Ada). The G, form an increasing transfinite 
sequence of symmetric sets. We shall construct X c S as the union of sets 
X,. Define KO = Q)  and K, = IJ {Xg: P < ol} and choose xu E B, \ f(KJ and 
Cy,, ~ ~ ) ~ ~ ~ n [ ( ~ ~ u f ( ~ a ) ) f x ( ~ ~ ~ f  (MJ)C]. PUf Xa = K c l ~  {xe, YU:, ~ a )  and, 
finally, X = (J (X,:  a < c). 

Then X is Borel-dense in S and is I@)-dense of order 2 in S.  Yet for 
each a, the set (X x X) R & is of cardinality less than c. Thus X is not Borel- 
dense of order 2 in S and for each B < c, the set Xl,NP is Borel-dense in 
S \Np  of order 1, but not of order 2. 

Defining P = m* on X, we see that Proposition 1 implies that 
(X, B(X), P) is an independence space. On the other hand, Lemma 5 shows 
that (X, B(X), P)  is not a.s. Blackwell. 

Paoros~no~ 2. Let X be a Borek-dense slabset of S .  Then the following 
conditions are equivalent: 

(1) (X, 9(x)) is a universal independence space; 
(2) (X, g ( X ) )  is strongly Blackwell; 
(3) (X, 9?(X))  is Blackwell; 
(4)  X is Bopel-dense of order 2 in S .  
Proof. The equivalence of conditions 2, 3, 4 was stated in Lemma 5. 

The implication 2 =+. 1 follows from Lemma 4. It remains only to prove that 
B =4. We shall establish the contrapositive. Suppose that X is Borel-dense 
of order 1, but not of order 2, in S. Then, according to Lemma 5 in [12], 
there is a Borel-automorphism a of S onto itself such that 

{a) a = a-I, 
(b) the set T = ( ( s ,  t): ol (s) # s )  is uncountable and does not meet the 

set X x X .  



Independence for rndorn variables 

Define the sets 

Note that a (So )  = So,  GI [S1) = S2, and a (S , )  = S1. Let rn, be a conti- 
nuous probability on S with m,(S,) = 1. Let m, be the image measure m, 
= a (m,) = ml a- l ,  Define m = (m, + m,)/2. 

It is no loss of generality to assume that S is some Borel subset of 
the real line. This we do, defining ,f : S -. S by the rule f (s) = sAa (s), the 
Iesser of s and ol(s). Define the sub-u-algebras W and 9 of a(S) as 

We see that V and 9 are m-independent. For exmple, let BEB(S) 
and put B , = B n S o ,  B 1 = B n S 1 ,  B,=BnS, .  Then 

f'- (d3) = B, u a(B2) u B,, 

so that mf - ' (B) = (m, a (B2)  +ma IB2))/2 = m1 ot I(BZ). AIso, 

m f - (B)  n S, )  = ma (Ba) = m, or (Ef2)/2 = RZ (f - (8)) m(S,). 

Hence, S1 is independent of W, as are So and 3,. 
Since X is Barddense in S and m is continuous, one has m"(X) = 1 and 

the m*-independence of V(X) and g(X). However, V(X) is separable, so that 
XI = St n X  is a set in g(.X) which is a 'union of %?(a-aloms. Now, X, 
belongs to 3(X)1 and cannot be m*-independent of itself. This is the desired 
contradiction, q.e.d. 
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