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NOTIONS OF INDEPENDENCE FOR RANDOM VARIABLES
BY
R. M. SHORTT (MippLETOwN, CONDN.)

Abstract. The paper considers two known notions of indepen-
dence for random variables in the probability space (X, %, P), where
X is a subset of the fixed uncountable standard space and # - the
o-field of Borel subsets relativized to X. ’

0. Introduction. When are two random variables independent? There are
at least two definitions of the concept: in their measure-theoretic form, they
may be traced back to “founding fathers” Kolmogoroff and Steinhaus. In
response to a challenge of E. Marczewski, both Doob and Jessen [2], [3]
simultaneously produced examples to show that, in general, the two defini-
tions are not equivalent. However, with the natural assumption that the
underlying probability space is perfect, Steinhaus- and Kolmogoroff-indepen-
dence come to mean the same. Particulars may be found in [7] and [8].

In [7], D. Ramachandran showed that a certain set-theoretic condition
for measurable structures (the strong Blackwell property) also reconciles the
two definitions. He asked (P 930) whether a weaker condition (the Blackwell
property) would suffice. An example in [13] shows that, at least under the
continuum hypothesis (CH), the answer is “no”. He also asked (P 931)
whether the equivalence of the two notions of independence implies an
almost sure Blackwell property. In this paper, we see that the answer is again
in the negative (CH). However, for a certain class of singular spaces, ‘a
limited form of such a result is available (Proposition 2).

Our main technique in this is the idea of a density of sets relative to a
given g-ideal of Borel sets [10], [12]. Density with respect to the o-ideal of
countable sets is closely related to “Blackwell properties” (Lemma 5), whereas
density for the o-ideal of probability zero sets bears on the question of
independence (Proposition 1).

1. Preliminary survey. We deal exclusively with separable spaces: these
are measurable spaces (X, %) whose o-algebra # is countably generated (c.g.)
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and contains all singleton sets drawn from X. If 4 is a subset of X, then 4
becomes a separable space under the relative structure %#H(A4)
={BnA: Be#}. A separable space (S, #(S)) is standard if there is a
complete separable metric on S for which #(S) is the corresponding Borel
structure. Any two uncountable standard spaces are Borel-isomorphic, and
any separable space is isomorphic with a subset of an uncountable standard
space. For these and other customaries concerning separable spaces, we refer
the reader to the references [17, [4], or the first parts of [5].

Hereon, the symbol S will denote a fixed uncountable standard space
with Borel structure & = Z(S).

LemMa 1. Let X be a subset of S and let 4(X) be a c.g. sub-c-algebra of
B (X). Then there is a cg. sub-c-algebra € of 2B (8) whose relative structure on
X is ¥(X).

Proof. Since ¥(X) is ¢.g., there is a real function f on X such that €(X)
= {f~'(B): B a linear Borel set}. For this technique, consuit [1] or [6].
Now there is an extension g of f to all of S which is % (S)-measurable ([4], p.
434, or [9]). Then ¥ = {g~'(B): B linear Borel set} is the desired o-algebra,
g.e.d.

Let I be a o-ideal in this Borel structure %(S). A subset R of $ xS in I-
reticulate if there is some set N in I with R = (N x8) V(8 x N). A subset X of
S is I-dense (of order 1) if X intersects every set in Z(S)\I. A subset X of § is

I-dense of order 2 if X x X intersects every set R in #(S x S) which is not I-

reticulate. We shall be interested in two particular g-ideals.

‘ Let I(c) be the o-ideal of all countable subsets of S. In keeping with the
phraseology of earlier work [10], [12], we shall use the term Borel-dense to

mean I(c)dense. Let m be a Borel probability measure on S. Define I(m) to

‘be the g-ideal of all m-null members of % (S). Note that X is I (m)-dcnse in§

if and only if m*(X) = 1.

By a probability space we mean a tnple (X, #(X), P), where Pis a
probability measure on #(X) and (X, #(X)) is a separable space. Suppose
that X is a subset of S. Then each probability ' P on X gives rise to a
probability P on S. Define P(B)=P(BnX) for B in #(S) to be the
probability induced by P. We may pass freely between probabilities on S and
on X < § via the easy

LemMa 2. Let m be a probability on S and let P be a probability on
X <=8. Then

@ (P =P;

(b) if m*(X) =1, then m* =m.

A probability space (X, &, P) is perfect if there is some standard set
Be #(X) with P(B) = 1. This definition differs from the usual one, but the
two agree when (X, 4 (X)) is separable ([8], 2.4.1, and [11], Theorem 2). Say
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that a separable space X is universally measurable (u.m.) if (X, #(X), P) is
perfect for every probability P on X. Again, this is different from the usual
definition, but the two coincide for separable spaces ([11], Lemma 4). Our
perfect spaces are those termed “metrically standard” by Mackey [5].

Let m be a probability on S. Two sub-o-algebras € and 2 in #(S) are
m-independent if m(C " D) =m(C)m(D) for all Ce¥% and DeP. A real
measurable function & on a probability space (X, #, P) is called a random
variable. Each random variable generates two “spectral” g-algebras in %#(X):

B(&) = {¢1(B): B linear Borel set}; ‘

A (&) = {1 (A)e B(X): A linear set}.

Clearly, #(¢) < o4 (£) < #(X). Random variables £ and # are Steinhaus-
independent [resp. Kolmogoroff-independent] if #(£) and #(n) [resp. (&)
and o/ ()] are P-independent. Say that (X, 4, P) is an independence space if
these notions of independence coincide. There are classical examples due to
Doob and Jessen [2], [3] to show that not every probability triple is an
independence space. Say that a separable (X, %) is a universal independence
space if for every probability P on X, the triple (X, #, P) is an independence
space. Using Lemma 2, it is easy to establish

LemMA 3. Let m be a Borel probability on S and let X < S be such that
m*(X)=1. Put P=m* on (X, # (X)) and suppose that € and 2 are sub-o-
algebras of B(S). Then the following are equivalent:

(1) € and 2 are m-independent;

(2) ¢(X) and 2(X) are P-independent. .

We say that a separable space (X, #(X)) is strongly Blackwell [resp.
Blackwell] if for each real measurable function [resp. one-one function] ¢ on
X, one has Z(&) = &/ (&). For a survey of results on Blackwellian properties,
see [1]. We mention a few basic facts.

Fact 1. Let (X, #) be a separable space. Then the following are
equivalent: '

1) (X, %) is a Blackwell space;

(2) whenever ¢ (X) is a c.g. sub-g-algebra of #(X) separating points of
X, then %(X) = A(X);

(3) whenever ¢ is a one-one measurable real function on (X, %), then &
is a Borel isomorphism of X onto its image £(X).

Fact 2. Let (X %) be a separable space. Then the followmg are
equivalent:

(1) (X, #) is strongly Blackwell;

(2) whenever 4(X) and 2(X) are c.g. sub-g-algebras of #(X) with the
same atoms, then €(X) = 2(X);

(3) whenever ¢ is a measurable real functlon on (X, @), then f(X) <R
has the Blackwell property.
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Fact 3. If (X, #) is Blackwell [resp. strong Blackwell], then every
member of 4(X) is Blackwell [resp. strong Blackwell] in its relative struc-
ture.

Fact 4. Every standard or analytic space is strongly Blackwell. v

Fact 5. There is at least one co-analytic space without the Blackwell
property. :

Fact 6. There is a strong Blackwell space (X, #) which is not u.m.

Proofs of all of these points and a short history of these objects are to
be found in [1]. The question of whether there is a Blackwell space not
s*vrongly Blackwell is unsettled except under some extra set-theoretic assump-
tions (such as MA or CH, where it is true — this according to some
unpublished work of D. Fremlin, W. Bzy! and J. Jasinski).

LEMMA 4. Every strong Blackwell (X, #) is a universal independence

space.
Proof. This follows quickly from the definitions, since #(¢) and o7 (&)

always coincide.

In [12], one finds a proof of the following

LEMMA 5. Let X be Borel-dense in S. Then the following are equivalent:

(1) (X, #(X)) is strong Blackwell,

(2 (X, #B(X)) is Blackwell;

(3) X is Borel-dense of order 2. _

Say that a probability space (X #(X), P)is almost surely (a.s.) Blackwell
[resp. strong Blackwell] if there is some B in #(X) w1th PB)=1 and
(B, #(B)) Blackwell [resp. strong Blackwell].

To summarise, we offer the following diagram of xmphcatxons

u. m. strong Blackwell
set-theoretic l——-» ‘universal independence «j—» Blackwell

space

perfect space
f———— a. s. strong Blackwell

measure-theoretic { -
' independence space «——L a. s. Blackwell

Properties in the upper bracket are set-theoretic and apply to a separab-
le space (X, #(X)); those in the lower bracket are measure-theoretic and
apply to a probability space (X, #(X), P) with separable Borel structure
#A(X). Within each bracket, no other implications may be added to the
network. To see this, we recall facts 5 and 6 supra, noting that every co-
analytic space is u.m. Also:

1. Assuming the continuum hypothesis CH, or Martin’s Axiom MA,
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there is a Blackwell space which is not a universal independence space. An
example is constructed in [13].

2. There is an independence space (X, 4, P) which is not a.s. Blackwell.
This is one of the main results of thlS paper: v. the example in the next
section.

2. New results, The imposition of the strong Blackwell property on a
separable space provides an easy escape from any paradox involving discre-
pancy between the Steinhaus and Kolmogoroff definitions of independence.
It must be said, however, that it is a rather artificial restriction and, in view
of our counter-examples, one that is overly severe. A more natural condition
is that of I (m)-density of order 2, which we conjecture to be equivalent to the
independence property.

LemMA 6. Let m be a Borel probability on S and suppose that X < S is
I(m)-dense of order 2 in S. Suppose that € < ¥,, are c.g. sub-c-algebras of
AB(S) such that €(X) and €,(X) have the same atoms. Then there is a set N in
% (S) with mN =0 and €(S\N) = %, (S\N).

Proof. Let f and f; be real functions generating the s-algebras ¥ and
%,. Define _

= {(s, )eS xS: f(s) = f(1) and fi(s) # f1 (D)}

Then Tn(X xX)=(, so that there is some N as indicated with
Tc(NxS)u(SxN). Then ¥(S\N) and %,(S\N) have the same atoms.
Since S\N is standard, it has the strong Blackwell property. This implies

“that €(S\N) = 4,(S\N), q.ed.

ProposiTiON 1.-Let m be a Borel probability on a standard space S and Iet
X =S be I(m)-dense of order 2 in S. Then (X, B(X), m*) is an mdependence
space.

Proof. Let ¢(X) and 2(X) be c.g. sub-g-algebras of #(X) which are
m*-independent. By Lemma 1, there are c.g. sub-o-algebras ¥ and 2 of #(S)
whose relativisations to X are € (X) and 2 (X), respectively. From Lemma 3,
% and 2 are m-independent.

Suppose that 4 and B are sets in & such that AnX and BAX are
unions of #(X)-atoms and % (X)-atoms, respectively. Define ¢, = o{%, 4)
and 2, =0(2, B). We must establish that #,(X) and 2,(X) are m*-
independent.

Using Lemma 6, we produce a set N in @(S) with m(N) = 0 such that
%(S\N) = %, (S\N) and 2(S\N) = 2, (S\N). Calculate:

m*(AnXnBnX)=m(AnB) =m(A~BAN)=m(AnN BN
= m(AnN")m(BmN‘] = m(A)ym(B)

ged. = m*(4 N X)m*(B n X),
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Conjecture. Let P be a Borel probability on X c S. Then the follo-
wing are equivalent:

(1) (X, #(X), P) is an independence space;

(2) X is I(P)-dense of order 2 in S.

The following example decides (P 931) in [7], which is Q.5 in [8].

Example. Assuming CH, there is a non-perfect independence space
which is not a.s. Blackwell.

- Construction. We take S to be the unit interval ]O, 1[ under the
usual standard structure and define m to be Lebesgue measure on S. List the
uncountable members of #(S) as ByB;B,...B,...,a <c; list the sets in
#(S xS) which are not I(m)-reticulate as RyR, R,...R,..., a <c; finally,
list the m-null sets in #(S) as NgN;N,...N,..., a <c. For each a <c¢,
define M, =) {Ny: p<a}. ‘

Define f: S — S by the rule f(s) = 1—s. Define, for each a < ¢, the set
G, = {(5.f (s)): seM, or f(s)eM,}. The G, form an increasing transfinite
sequence of symmetric sets. We shall construct X — S as the union of sets
X,. Define Ko =@ and K, = J {X,: B <ac} and choose x,eB,\ f(K,) and
Va> 2 € R, N [(M, uf(Mu)) x(M, U f(M))]. Put X, =K, U {x,, Vs, z,} and,
finally, X =) {X,: a <c}.

Then X is Borel-dense in S and is I(m)-dense of order 2 in §. Yet for
each a, the set (X x X) n G, is of cardinality less than c. Thus X is not Borel-
dense of order 2 in § and for each B <c, the set X\N; is Borel-dense in
S\N; of order 1, but not of order 2.

Defining P=m* on X, we see that Proposition 1 implies that
(X, #(X), P) is an independence space. On the other hand, Lemma 5 shows
that {X, #(X), P) is not as. Blackwell.

ProposiTion 2. Let X be a Borel-dense subset of S. Then the following
conditions are equivalent:

(1) (X, #(X)) is a universal independence space;

(2) (X, #(X)) is strongly Blackwell;

(3) (X, #(X)) is Blackwell;

(4) X is Borel-dense of order 2 in S.

Proof. The equivalence of conditions 2, 3, 4 was stated in Lemma 5.
The implication 2=>1 follows from Lemma 4. It remains only to prove that
1=>4. We shall establish the contrapositive. Suppose that X 'is Borel-dense
of order 1, but not of order 2, in S. Then, according to Lemma 5 in [12],
there is a Borel-automorphism o of S onto itself such that

(@ a=a"t,

(b) the set T = {(s, #): a(s) # s} is uncountable and does not meet the
set X xX. -
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Define the sets -
So={seS: a(s)=s}, S;={seS:als)<s}, S§,={seS: a(s)>s}.

Note that a(Sy) =Sy, «(S{) = 8,, and «(S,) =S;. Let m, be a conti-
nuous probability on § with m, (S;) = 1. Let m, be the image measure m,
= o (m,;) = m, o~ . Define m = (m; +m,)/2.

It is no loss of generality to assume that S is some Borel subset of
the real line. This we do, defining f: S — S by the rule f(s) = sda(s), the
lesser of s and a«f(s). Define the sub-c-algebras ¢ and 9 of #(S) as

€=B(f)={f"(B): BeB(S)} and D = 6(S,, S;, S,).

We see that ¥ and 9 are m-independent. For example, let Be Z(S)
and put B =BnSy, B, =BnS;, B,=BnS,. Then ’

f71(B)=Byua(B;)UB,, »
so that mf ~(B) = (m; a(By)+m,(B,))/2 = m, a(B,). Also,
m(f”l (B) "'131) = ma(B,) = my a(By)/2 = m(fk I(B))m(Sl).

Hence, S, is independent of %, as are S, and S,.

Since X is Borel-dense in S and m is continuous, one has m* (X) = 1 and
the m*-independence of % (X) and 2(X). However, ¢ (X) is separable, so that
X, =8,nX is a set in #(X) which is a union of #(X)-atoms. Now, X,
belongs to &(X), and cannot be m*-independent of itself. This is the desired
contradiction, g.e.d.
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